Tod

class minkasi_wrapper.extern.minkasi.minkasi.Tod(info)[source]

Bases: object

Methods Summary

apply_noise([dat])

apply_noise_cm_white([dat])

apply_noise_white_masked([dat])

clear_saved_pix([tag])

copy([copy_info])

cut_detectors(isgood)

dot(mapset, mapset_out[, times])

get_data()

get_data_dims()

get_det_weights()

get_empty([clear])

get_ndata()

get_ndet()

get_nsamp()

get_radec()

get_saved_pix([tag])

get_tvec()

lims()

mapset2tod(mapset[, dat])

prior_from_skymap(skymap)

stuff.

save_pixellization(tag, ipix)

set_apix()

calculates dxel normalized to +-1 from elevation

set_jumps(jumps)

set_noise([modelclass, dat, delayed])

set_noise_binned_eig([dat, freqs, ...])

set_noise_cm_white()

set_noise_smoothed_svd([fwhm, func, pars, ...])

If func comes in as not empty, assume we can call func(pars,tod) to get a predicted model for the tod that we subtract off before estimating the noise.

set_noise_white_masked()

set_pix(map)

set_tag(tag)

timestream_chisq([dat])

tod2mapset(mapset[, dat])

Methods Documentation

apply_noise(dat=None)[source]
apply_noise_cm_white(dat=None)[source]
apply_noise_white_masked(dat=None)[source]
clear_saved_pix(tag=None)[source]
copy(copy_info=False)[source]
cut_detectors(isgood)[source]
dot(mapset, mapset_out, times=False)[source]
get_data()[source]
get_data_dims()[source]
get_det_weights()[source]
get_empty(clear=False)[source]
get_ndata()[source]
get_ndet()[source]
get_nsamp()[source]
get_radec()[source]
get_saved_pix(tag=None)[source]
get_tvec()[source]
lims()[source]
mapset2tod(mapset, dat=None)[source]
prior_from_skymap(skymap)[source]

stuff. prior_from_skymap(self,skymap): Given e.g. the gradient of a map that has been zeroed under some threshold, return a CutsCompact object that can be used as a prior for solving for per-sample deviations due to strong map gradients. This is to reduce X’s around bright sources. The input map should be a SkyMap that is non-zero where one wishes to solve for the per-sample deviations, and the non-zero values should be the standard deviations expected in those pixel. The returned CutsCompact object will have the weight (i.e. 1/input squared) in its map.

save_pixellization(tag, ipix)[source]
set_apix()[source]

calculates dxel normalized to +-1 from elevation

set_jumps(jumps)[source]
set_noise(modelclass=<class 'minkasi_wrapper.extern.minkasi.minkasi.NoiseSmoothedSVD'>, dat=None, delayed=False, *args, **kwargs)[source]
set_noise_binned_eig(dat=None, freqs=None, scale_facs=None, thresh=5.0)[source]
set_noise_cm_white()[source]
set_noise_smoothed_svd(fwhm=50, func=None, pars=None, prewhiten=False, fit_powlaw=False)[source]

If func comes in as not empty, assume we can call func(pars,tod) to get a predicted model for the tod that we subtract off before estimating the noise.

set_noise_white_masked()[source]
set_pix(map)[source]
set_tag(tag)[source]
timestream_chisq(dat=None)[source]
tod2mapset(mapset, dat=None)[source]