Tod¶
- class minkasi_wrapper.extern.minkasi.minkasi.Tod(info)[source]¶
Bases:
object
Methods Summary
apply_noise
([dat])apply_noise_cm_white
([dat])apply_noise_white_masked
([dat])clear_saved_pix
([tag])copy
([copy_info])cut_detectors
(isgood)dot
(mapset, mapset_out[, times])get_data
()get_empty
([clear])get_ndet
()get_saved_pix
([tag])get_tvec
()lims
()mapset2tod
(mapset[, dat])prior_from_skymap
(skymap)stuff.
save_pixellization
(tag, ipix)set_apix
()calculates dxel normalized to +-1 from elevation
set_jumps
(jumps)set_noise
([modelclass, dat, delayed])set_noise_binned_eig
([dat, freqs, ...])set_noise_smoothed_svd
([fwhm, func, pars, ...])If func comes in as not empty, assume we can call func(pars,tod) to get a predicted model for the tod that we subtract off before estimating the noise.
set_pix
(map)set_tag
(tag)timestream_chisq
([dat])tod2mapset
(mapset[, dat])Methods Documentation
- prior_from_skymap(skymap)[source]¶
stuff. prior_from_skymap(self,skymap): Given e.g. the gradient of a map that has been zeroed under some threshold, return a CutsCompact object that can be used as a prior for solving for per-sample deviations due to strong map gradients. This is to reduce X’s around bright sources. The input map should be a SkyMap that is non-zero where one wishes to solve for the per-sample deviations, and the non-zero values should be the standard deviations expected in those pixel. The returned CutsCompact object will have the weight (i.e. 1/input squared) in its map.
- set_noise(modelclass=<class 'minkasi_wrapper.extern.minkasi.minkasi.NoiseSmoothedSVD'>, dat=None, delayed=False, *args, **kwargs)[source]¶